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Nature may exploit the catalytic promiscuity observed in some
enzymes in order to create new enzymes.1 A catalytically promiscu-
ous enzyme has one or more low-level activities in addition to its
primary, physiological activity.2 Duplication of the gene, followed
by a series of mutations to amplify the desired activity, generates
a new enzyme now having the progenitor’s low-level activity as
the primary activity. We report herein the observation of low-level
hydration activities in the bacterial isomerase, 4-oxalocrotonate
tautomerase (4-OT) fromPseudomonas putidamt-2 and a 4-OT
homologue, YwhB, found inBacillus subtilis.3 In addition to
providing very clear examples of catalytically promiscuous en-
zymes, these observations support the proposed evolutionary link
between these enzymes and the recently characterizedtrans-3-
chloroacrylic acid dehalogenase (CaaD)4 and show that 4-OT- and
YwhB-like sequences have diverse catalytic capabilities and may
have served as templates for the creation of new enzymatic
activities.

4-OT, found in a pathway that degrades aromatic hydrocarbons,
catalyzes the conversion of 2-oxo-4E-hexenedioate (1; Scheme 1)
to 2-oxo-3E-hexenedioate (3) through 2-hydroxy-2,4E-hexadiene-
dioate (2).5 Among the key catalytic residues are Pro-1, which
abstracts the C-3 proton of1, and Arg-11, which participates in
both substrate binding (at C-6) and in catalysis.6 4-OT is the title
enzyme of the 4-OT family, whose structurally homologous
members are constructed from short monomers (61-81 amino
acids), which conserve a signatureâ-R-â structural motif as well
as Pro-1.7 YwhB shares 36% pairwise sequence identity with 4-OT
and retains both Pro-1 and Arg-11.

Sequence analysis first suggested that the heterohexameric CaaD,
responsible for the hydrolytic dehalogenation of 3E-chloro- and
3E-bromoacrylate [(E)-4 and (E)-5, respectively; Scheme 2], might
be a 4-OT family member.4a The pairwise sequence identities
observed between YwhB and theR-subunit of CaaD (35%) and
4-OT and theâ-subunit (25%) are low, but mutagenesis indicated
that â-Pro-1 and R-Arg-11 are critical for activity, further
substantiating a relationship between CaaD and the 4-OT family.4a

In view of these observations, we examined whether 4-OT and
YwhB catalyzed the hydration of 3E-haloacrylates, resulting in their
dehalogenation. Accordingly, each protein was incubated with (E)-
4, and the reactions were monitored by1H NMR spectroscopy.8

The1H NMR spectrum of (E)-4 in Na2HPO4 buffer (pH 6.8) shows
two doublets (6.09 and 6.89 ppm), which correspond to the C-2
and C-3 protons, respectively. After incubation of (E)-4 with 4-OT
(0.6 mg) for 136 h, the intensity of these two signals diminishes
and four new signals appear. Two signals (2.04 and 9.48 ppm)
correspond to acetaldehyde (8), whereas the other two signals (1.13
and 5.05 ppm) correspond to its hydrate (9).4a,9 Integration of the
signals indicates that∼74% of (E)-4 has been converted to a
mixture of 8 and9. Incubation of YwhB with (E)-4 results in the
same products, although the reaction is not as efficient.10 Although
less YwhB (0.3 mg) was used, a longer incubation period (171 h)

was required to convert∼30% of (E)-4 to a mixture of8 and9.
Both enzymes will process (E)-5: ∼92% of (E)-5 is converted to
8 and9 after 209 h by 4-OT and∼93% of (E)-5 is converted to a
mixture of 8 and9 after 616 h by YwhB.

A control experiment demonstrates that the hydration of (E)-4
is an enzyme-catalyzed process. An1H NMR spectrum of (E)-4
incubated in Na2HPO4 buffer (pH 6.8) for 192 h (8 days) showed
that only (E)-4 was present, ruling out a nonenzymatic hydration.
The nonenzymatic hydration of (E)-4 requires much harsher
conditions: only∼10% of the chloride is removed after 24 h in
0.5 M aqueous NaOH at 60°C.11

The results show that the incubation of (E)-4 and (E)-5 with
4-OT or YwhB generates8, which is readily hydrated to yield9.
A likely scenario for the formation of8 from these compounds
involves the initial enzymatic hydration of the 3E-haloacrylates to
produce an unstable halohydrin species (6, Scheme 2), which
decomposes to malonate semialdehyde (7).4b Nonenzymatic decar-
boxylation of7 yields8. Compound7 is not sufficiently stable to
accumulate in quantities detectable by1H NMR spectroscopy during
the lengthy incubation periods.

The preparations of 4-OT and YwhB used in these experiments
were highly purified, but it remained possible that a contaminating
enzyme could be responsible for the observed activity. To eliminate
this concern, two control experiments were performed. First, a
partially purified protein sample from cells harboring an “empty”
pET-24a(+) vector (i.e., the genes encoding 4-OT or YwhB are
absent) was examined.12 Neither (E)-4 nor (E)-5 was converted to
product after 10.5 days using 2.6 mg of protein. In addition,
incubation of synthetically prepared 4-OT (likely to be free of
contaminating cellular enzymes) with (E)-4 for 208 h led to the
same product mixture in comparable amounts.

The isomer specificities of 4-OT and YwhB were also investi-
gated. An1H NMR spectrum of a reaction mixture containing (Z)-4
and 4-OT showed that∼3-4% of theZ-isomer was converted to
8 and9 after lengthy incubation (139 h using 0.64 mg). In contrast,
YwhB showed no detectable activity with (Z)-4 after prolonged
incubation (209 h using 0.51 mg). The enzymes show a clear
preference for theE-isomer, which is consistent with the structural
resemblance of (E)-4 to the acrylate portion of 4E-1 and 2.
Moreover, this observation implicates the active sites of the two
enzymes in the low-level activity.13

Scheme 1

Scheme 2
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Having established a low-level CaaD activity for both enzymes,
kinetic parameters were determined (Table 1).14 Saturation with
(E)-4 was not achieved for YwhB. A comparison of thekcat/Km

values shows that 4-OT and YwhB are 4.6× 106-fold and 2.7×
106-fold, respectively, less efficient than CaaD.15 For 4-OT, binding
(Km) and turnover (kcat) are adversely and comparably impacted
such that a 103-fold decrease inKm coupled with a 103-fold increase
in kcat will produce CaaD activity levels. With regard to the
conversion of2 to 3, the CaaD activities of 4-OT and YwhB are
7.7 × 108-fold and 6.4× 105-fold less efficient, respectively.

To gauge the importance of Pro-1 and Arg-11 to the activity,
kcat/Km values were also determined for three mutants, as saturation
could not be achieved with these mutants (Table 1).16 The kcat/Km

value for the P1A-4-OT mutant is 108-fold less than that of the
wild type, whereas thekcat/Km value for the R11A-4-OT mutant is
slightly greater (6-fold). Thekcat/Km value for the R11A-YwhB
mutant is 23-fold less than that of YwhB, whereas there is no
detectable activity for the P1A-YwhB mutant. These results provide
further evidence indicating that 4-OT and YwhB are responsible
for the observed activities and that Pro-1 is critical for activity in
both enzymes, whereas Arg-11 is only essential for the CaaD
activity of YwhB.

Two mechanisms might explain the observed hydratase activity.
In both mechanisms, a positively charged residue (e.g., Arg-11)
may interact with the C-1 carboxylate group of (E)-4 or (E)-5 and
draw electron density away from the C-3 position to form an enolic
intermediate. The partial positive charge at C-3 is now susceptible
to a Michael addition of water. 4-OT has two active-site arginines,
Arg-11 and Arg-39, whereas YwhB has only Arg-11. Thus,
mutation of Arg-11 in 4-OT might not lead to a loss of activity
because (E)-4 may interact with Arg-39. In one mechanism, Pro-1
may function as a general base and activate the water molecule for
addition to C-3. Subsequently, Pro-1, now functioning as a general
acid, would deliver the proton to C-2 to complete the addition of
water. In a second mechanism, water may add to C-3 as a result of
the partial positive charge, and Pro-1 might act as a general acid
catalyst and deliver a proton to the C-2 position of (E)-4 or (E)-5
upon ketonization of the enediolate intermediate.

The proposed role for Pro-1 in the latter mechanism is suggested
by recent findings implicating theâ-Pro-1 as a general acid catalyst
in the CaaD-catalyzed reaction.17 The â-Pro-1 of CaaD has a pKa

of ∼9.2, enabling it to function as a general acid catalyst.17 In
contrast, the catalytic Pro-1 in 4-OT has a pKa of ∼6.4 due to its
presence in the hydrophobic active site.6a This lowered pKa value
enables it to function as a general base catalyst in its physiological
activity at cellular pH. Under the conditions of the kinetic
experiments (pH 7.8), very little 4-OT is present with Pro-1 in the
correct protonation state to function as a general acid catalyst. Both
mechanisms offer an interesting evolutionary route for the produc-
tion of a more efficient dehalogenase. One or more mutations could

decrease the hydrophobic environment of 4-OT’s active site, making
it more hydrophilic. The resulting active site would now be more
amenable to a hydrolytic reaction, thereby raising the pKa of Pro-1
and increasing the concentration of enzyme in the reactive form.
This possibility is being explored.
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Table 1. Kinetic Parameters for 4-OT, YwhB, and Mutants

enzyme sub. kcat, (s-1) kcat/Km, (M-1 s-1)

4-OT 26c 3500( 500 (2.0( 0.3)× 107

4-OT (E)-4 (8.3( 0.5)× 10-4 (2.6( 0.4)× 10-2

P1A-4-OT (E)-4 - (2.0( 0.3)× 10-4

R11A-4-OT (E)-4 - (1.6( 0.1)× 10-1

YwhB 2 26 ( 1.4 (2.8( 0.1)× 104

YwhB (E)-4 - (4.4( 1.0)× 10-2

R11A-YwhB (E)-4 - (1.9( 0.2)× 10-3

CaaD (E)-44b 3.8( 0.1 (1.2( 0.1)× 105
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